COLLISIONS AND TRANSPORT

Temperatures are in eV; the corresponding value of Boltzmann’s constant

is k = 1.60 x 10712 erg/eV; masses u, u’ are in units of the proton mass;
ea = Zqe is the charge of species a. All other units are cgs except where
noted.

Relaxation Rates

Rates are associated with four relaxation processes arising from the in-
teraction of test particles (labeled «) streaming with velocity v, through a
background of field particles (labeled (3):

dv
slowing down —2 = —Vg\’gva
dt
. . d — \2 _ a\pB 2
transverse diffusion E(va — Vo) = v, Mg
. . d — \2 _ _a\p 2
parallel diffusion E(va — va)” = v v
d 2 a\pg3 2
energy loss Eva = —v, ‘Tva,

where the averages are performed over an ensemble of test particles and a
Maxwellian field particle distribution. The exact formulas may be written'®

vV = (14 ma /mg)(z* ) s,
iV =2 [(1 = 1722 V) (V) + 9 @™V ] g,
V|<IX\5 _ [w(m’a\ﬁ)/wa\ﬁ] V(f)x\ﬁ;

vV =2 [(ma/mp) (@) — ¢ @) v,

where

1/8‘\’3 :47Tea2652>\a5n,3/ma2va3; z\B :mlgva2/2kTg;

_ 2 ’ 1/2 —t. / _dy

and Ao3 = InA,p is the Coulomb logarithm (see below). Limiting forms of
vs, v and v| are given in the following table. All the expressions shown
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have units cm3 sec™!. Test particle energy € and field particle temperature T

are both in eV; u = m;/m, where m, is the proton mass; Z is ion charge
state; in electron—electron and ion—ion encounters, field particle quantities are
distinguished by a prime. The two expressions given below for each rate hold

for very slow (z*\? <« 1) and very fast (z®\? > 1) test particles, respectively.
Slow Fast

Electron—electron
v I A, A~ 5.8 x 107673/ 77 x 1078732
VN A A58 x 10727 77 x 10753/
6\6 Ima X, 22.9%x 10757727 3.9 x 107 0T /2
Electronﬂon
VN s Z2 N es & 023527 3/2 —3.9x 10 %73/
e\i/niZQAez- ~ 2.5 x 10742 Y27 77 x 107 %78/
e\7“/n Z%Nei 2 1.2 x 107421727 01 x 10 2 e P/

Ion—electron

VN e ZP e 1.6 x 107207 T T3/2 0 17 x 104/ 2e 32
i\‘f/nezﬂie ~32x10 2u T2 1.8 x 107 T /2732
z\e/n Z%Nje ~ 1.6 x 107977727 17 x 1074/ 215/

Ion—ion
i\’ 11/2 I\ —1/2
V; —8 M I —3/2
~ 6.8 X 10 14+ — T
ngt Z2Z"2 N0 K ( " M)
1 1\ pl/2
—9.0x 1078 <—+—,) —
/ pooop') e
i\i
Vi A~ 1.4 x 1077 /M2t /2 0
’I’Li/ ZQZ/QA,Ll/ '
— 1.8 x 107 Tt/ 2e73/2
z\'L
Y -8 11/2 —1pp—1/2 —1
~ 6.8 x 10 T

— 9.0 X 10_8u1/2u1_1T6_5/2
In the same limits, the energy transfer rate follows from the identity
Ve =205 — V)1 — V|,

except for the case of fast electrons or fast ions scattered by ions, where the
leading terms cancel. Then the appropriate forms are
vV 5 4.2 x 1077, 2% A,

€

[G_B/QM_l — 89 % 104('[,L/T)1/26_1 exp(—1836ue/T)] sec
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and

v\ 1.8 %107 n, 222",

(73202 /i =11 /)2 exp(—pe/T) ] sec™ .

In general, the energy transfer rate 1/?‘\5 is positive for € > €,™* and nega-
tive for € < eq*, where z* = (mg/ma)ea™/T3 is the solution of ¥’ (x*) =
(ma\mg)y(x*). The ratio e,™* /T3 is given for a number of specific «, 8 in the
following table:

a\B | i\e e\e, i\i e\p e\D e\T, e\He®  e\He*

- 1.5 098 4.8x1072 26x1072 1.8x1072 1.4x 103

When both species are near Maxwellian, with T; < T., there are just
two characteristic collision rates. For Z =1,

Ve = 2.9 X 10_677)\Te_3/2 sec_l;

v, = 4.8 X 10_8n)\T¢_3/2,u_1/2 sec” !,

Temperature Isotropization

Isotropization is described by

dT | 1dT|| o
L T e —Ty),
dt 2 dt vr(TL = 1))

where, if A = TJ_/T” —1>0,

tan~1(AY/2)
Al/2

o 2VTesles?nadas o
TS T pgaye | )

If A < 0, tan"*(AY/2)/AY/? is replaced by tanh™!(—A)Y/2/(—A)1/2. For
T, =~ T” = T,

vy = 8.2 X 10" AT 3/ 2 sec™ 1

yrfp =1.9 X 10_8n)\Z2u_1/2T_3/2 sec ',
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Thermal Equilibration

If the components of a plasma have different temperatures, but no rela-
tive drift, equilibration is described by

dT.
® = E s\ (T — T
dt Ve ( B 04)7
6

where s ) )
59\B _ 1.8 % 10—1° (mamp)'/?Za”Zs’nprap o]
‘ (maTs +mpTa)3/?

For electrons and ions with T, ~ T; = T, this implies
N s = 0\ ne = 3.2 x 1072220/ T % em® sec 1.

Coulomb Logarithm

For test particles of mass m, and charge e, = Z,e scattering off field
particles of mass mg and charge eg = Zge, the Coulomb logarithm is defined
as A = InA = In(rmax/Tmin). Here ryin is the larger of eaeg/malgz_ﬂ and

h/2mqpu, averaged over both particle velocity distributions, where mq,g =
mamg/(maq +mg) and U = Vo — Vg; Tmax = (47 Z nveﬂﬂ/l{Tw)_l/z, where
the summation extends over all species ~ for which @? < ’UT72 = kT, /m,. If

this inequality cannot be satisfied, or if either ﬂwca_l < Tmax OT ﬂwclg_l <
Tmax, the theory breaks down. Typically A = 10-20. Corrections to the trans-
port coefficients are O(A™1); hence the theory is good only to ~ 10% and fails
when A ~ 1.

The following cases are of particular interest:

(a) Thermal electron—electron collisions

Xee = 23 — In(ne /2T, 73/?), T. < 10eV;
— 24 — In(n. 2T, 7Y, T. 2 10eV.
(b) Electron—ion collisions
Aei = N\je =23 —In (nel/QZTe_3/2)7 Time/m; < Te < 10Z2 eV;
=24 —1n (n. /211, Time/m; < 10Z%eV < T,

=30 —In (ni1/2Ti_3/2Z2,LL_1), Te <T7;Zme/mi.
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(c) Mixed ion—ion collisions

(d) Counterstreaming ions (relative Veloc1ty vp = [Bpc) in the presence of

warm electrons, kT; /m;, kT /m; < vp? < kTe/me

Fokker-Planck Equation

DfaEafa—i—v-Vfo‘—kF-vaa:(afa) )
coll

Dt ot ot

where F is an external force field. The general form of the collision integral is

(Of%/0t)con = — Z Vy - J*\P | with

(03

a\B 60426B2 37, 2 _3
J =27 Aqg——— [ AV (v — uu)u
m
1 [e% 1G] / 1 B / [e%
NIV PV = — T (V)V fT(v)
mg Mo
(Landau form) where u = v/ — v and [ is the unit dyad, or alternatively,

2 2
3 x0T ) - 59 [P0V TGm] |

where the Rosenbluth potentials are

G(v) :/fﬁ(vl)udg’vl
H(v) = (1+ :L”b_ﬁ) /fﬁ(v yu~td®.
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If species « is a weak beam (number and energy density small compared with
background) streaming through a Maxwellian plasma, then

(¢ « [e7 1 « (e%
Ja\ﬁ:—m—y \6vf — —v \va-va
Mo +mg ° 2 |l
1
— Zl/i\ﬁ <U2/—vv> Vo f®.

B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the
Fokker-Planck collision terms can be approximated according to

Df. . (B .
Dt —I/ee(Fe —fe)+Vez(Fe fe)a
o v (Fs — f

Dt _Vze(Fz fz)+ ’L’L(Fl fz)

The respective slowing-down rates l/;l\ﬁ given in the Relaxation Rate section
above can be used for v,3, assuming slow ions and fast electrons, with € re-
placed by T,. (For v.. and v;;, one can equally well use v, and the result
is insensitive to whether the slow- or fast-test-particle limit is employed.) The
Maxwellians F,, and F, are given by

M 3/2 _ma(v—va)Q_
Fa = Nq exp —_ )
2rkT,, 2kT,,

_ meq 3/2 -ma(v _‘_/a)Q-
Fo = ng = exXp§ — = )
2kT,, i 2kT,, ]
where n,, v, and T, are the number density, mean drift velocity, and effective

temperature obtained by taking moments of f,. Some latitude in the definition
of T, and v, is possible;20 one choice is Te =T, T; = Te, Ve = V5, V; = Ve.

Transport Coefficients

Transport equations for a multispecies plasma:

«
d%ne,

dt

+noV - vy =0;

«
d%¥ v

dt

MaNa

1
= —Vpa — V- Py + Zoeng |:E+ -V X B} + Rqy;
c
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3 d*kT,

oV vy =—-V . qe — Ps: Vv, o
5 o +p v o] vo + Q

Here d® /dt = /0t + va - V; pa = nakT,, where k is Boltzmann’s constant;
R, = Zg Rog and Qo = ZB Qap, where R, and Q.3 are respectively
the momentum and energy gained by the ath species through collisions with
the Bth; P, is the stress tensor; and q, is the heat flow.

The transport coefficients in a simple two-component plasma (electrons
and singly charged ions) are tabulated below. Here || and L refer to the di-
rection of the magnetic field B = bB; u = v, — v; is the relative streaming
velocity; ne = n; = n; j = —neu is the current; wee = 1.76 X 10" Bsec™ ! and
wei = (Me/Mm;)wee are the electron and ion gyrofrequencies, respectively; and
the basic collisional times are taken to be

3 kT 3/2 T63/2
o= VMRT) T g 107 sec,
4/ 27 nhet ni

where X is the Coulomb logarithm, and

3/mi (kT;)3/? T;3/2
o= VMUET) T 9 s 107 112 sec.
4/7n Ae? n\

In the limit of large fields (weaTa > 1, @ = i, e) the transport processes may
be summarized as follows:%!

momentum transfer R.i= R, =R =Ry + Rrp;

frictional force Ru = ne(j /o +jrL/oL);
electrical oy =1960,; o = 7’1,627'6/7716;
conductivities
3n
thermal force Rr = —-0.71nV | (kT.) — 2—b X V1 (kTe);
ceTe
) ) 3me nk
ion heating Qi = — (Te — T3);
m; Te
electron heating Qe = —Q; — R - u;
ion heat flux ai = —k|V(kT:) — 0 V1L (kT:) + kb x VL (kT));
: i nkl;; i 2nkT; i 5nkT;
ion thermal K| =39———5 K| = ———5— Kp =5 _—;
conductivities myi MW, Ti 2miwei
electron heat flux q. = qg + ar;
.. e 3nkT,
frictional heat flux q, = 0.71InkTeu + 5 b X u,;
wceTe
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thermal gradient ar = =KV (kTe) — kI Vi (kTe) — kb X V1 (kTe);
heat flux

. nkT.Te . nkT, e 5nkT,
electron thermal K| =32———; k| =4T7——F—; K\ = 5——;
conductivities Me MeW STe 2Mmewece
stress tensor (either  Pyo= —n—O(me + Wyy) — n—l(me — Wyy) — 13 Way;
species) 2 2
710 Uit
Pyy= _?(me + Wyy) + ?(Www — Wyy) + n3Way;

n3
P:cy: wa = _771Wwy + ?(Ww:c - Wyy);

P,.=P., = —na2Wg. — 774Wyz;
Pyz: sz - _772Wyz + 774sz;

P,.= —To W2
(here the z axis is defined parallel to B);

ion viscosity 778 = 0.96nkT;7;; ”7; =

1Owci27'z 2 &')cum.QTz
Ny — v Mg — ;
2wc7§ Wesg
. . e . nkT, . nkT,
electron viscosity Ny = 0.73nkTe7e; my = 0.51 S5 My = 2.0 St
ce Te ch Te
e nkT, e nkT,
Ny = — v Mg = — .
2wece Wee

For both species the rate-of-strain tensor is defined as

v 0 2
L PR

Wik =
ik 8$k 8$j 3

When B = 0 the following simplifications occur:

Ry =nej/o; Rr = —0.7InV(kT.); qi = —/QT|V(I€T¢);

q., = 0.71nkT.u; qr = —I{ﬁV(k}Te); Pjr, = —noWj.

For weeTe > 1 > we;T;, the electrons obey the high-field expressions and the
ions obey the zero-field expressions.

Collisional transport theory is applicable when (1) macroscopic time rates

of change satisfy d/dt < 1/7, where 7 is the longest collisional time scale, and
(in the absence of a magnetic field) (2) macroscopic length scales L satisfy L >
l, where | = vT is the mean free path. In a strong field, w.e7T > 1, condition

(2) is replaced by L > [ and L; > lir. (L1 > re in a uniform field),
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where L) is a macroscopic scale parallel to the field B and L, is the smaller
of B/|V | B| and the transverse plasma dimension. In addition, the standard
transport coefficients are valid only when (3) the Coulomb logarithm satisfies
A > 1; (4) the electron gyroradius satisfies 7. > Ap, or 8Tn.mec? > B?; (5)
relative drifts u = v, — vg between two species are small compared with the
thermal velocities, i.e., u? < kTs /Mo, kT3/mg; and (6) anomalous transport
processes owing to microinstabilities are negligible.

Weakly Ionized Plasmas

Collision frequency for scattering of charged particles of species a by
neutrals is o Lo
Voo = oo 0 (kTa /ma)'/?,

a\0

where ng is the neutral density and o

is the cross section, typically ~

5% 10715 c¢cm? and weakly dependent on temperature.
When the system is small compared with a Debye length, L. < Ap, the
charged particle diffusion coefficients are

D, = kTa/mal/aa
In the opposite limit, both species diffuse at the ambipolar rate

_ HiDe —peDi (T; + Te)D; D,
Hi — He T;De + TeD;

DA

Y

where o = eq/Mmqvq is the mobility. The conductivity o, satisfies oo =
Na€albo-
In the presence of a magnetic field B the scalars u© and o become tensors,

Ja:aa.E:UﬁE||+JiEJ_ —l—O'?\[EXb,

where b = B/B and

2
U|| = N € /mOLVOé;
o =ofva’/(Va® +w.l);

o = crﬁ‘l/ocwcoé/(yoé2 + wCQ).

Here o0, and o, are the Pedersen and Hall conductivities, respectively.
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